
Technology Platform Supporting Application

Functionality

Architecture Perspective:

Technology Platform Layers

Lecture Objectives

• Look at a common layer architecture
• Understand the application-technology

boundary
• Begin discussion of principal layers
• Recognize difference between

layers/partitions and distribution tiers

A Very Common Layered Architecture

“Platform” Layers

Functional Architecture

Technical Architecture

• Operating Systems

• Networking

• Device drivers

• etc.

• Distributed communications

• Remote method invocation,

mail, messaging, notification,

etc.

• Databases

• Application choreography

• Security

• User interface framework

• Web-based and platform-

based presentation and task

flow state management

• Error handling

• etc.

• Specific (sub)applications

• Workflow, user interaction,

configuration, etc.

• Common domain abstractions

▪ Data and interface standards

• Business logic

• Application integration

• etc.

Application-specific

Technology-general

Application-general

Technology-specific

Middleware

Common Domain

Distributed Platform

Application

Distributed Hardware

• Processors
• Displays
• I/O
• Disk drives
• Network
• etc.

Three Principal Layers

Presentation Layer
Handle the interaction between the user and the software
Range from command line or text UI to rich, fat GUI clients
Faceless services offered to external applications
“User” is a separate application

Domain Layer
Concerned with providing application specific functionality:
computation, flow control, activity dispatching, etc.

Data Source Layer
Concerned with managing the system databases and access
to other systems that do work on behalf of the application

Presentation Layer

Domain Layer

Data Source Layer

Architecture Design Approach

 Focus on system-level architecture
Major functional components and how they interact
Decisions that will be hard to change

 Top-down through a few levels of abstraction/detail
The system as layers and tiers
Application domain layer, presentation layer, and data source layer

Optional designs that identify major components within those layers
Technological approaches to implement common design patterns

 Yes, there will be code (and data models and HTML pages and XML
documents and ...), but a very large part of that is pre-defined, pre-
designed, and auto-generated
Where do you plug in your part?

Why not Bottom UP?

A Sequence of Design

Start with the domain layer

Move down to the data layer

Move up to the presentation layer

Does Layer Design

Order Matter?

Tiers vs. Layers

Layers (logical):

• All about the how “the code” is organized

• No assumptions about where “code” runs

Tiers (physical):

• All about where the code executes

• The places onto which code is deployed

Web-Based, N-Tier, Layered, Scalable

Architectures

Database Servers

Business Object

Services

Business Object

Engine

HTML

CGI

ASP Java

Web Browser

Web

Client

Web
Server

Java

Script
AppletsApplets .NET

Application
Server

Java, .NET, etc

Perl,
PHP,
etc.

Web

Client

Web

Client

Web

Client

Web

Server

Web

Server

Web

Client

Web

Server

Application

Server

Application

Server

Data Source Servers

...

...

...

Layers

https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ee658109(v=pandp.10)

https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ee658109(v=pandp.10)

Layers and Partitions ≠> Distribution Tiers

Each vertical and horizontal partition is a
possible place to distribute or replicate
functionality

• But it is not required

• All this can be on a single computer
➢ Indeed, for a very simple application, it

could all be in one class!
➢ With each layer as a separate subroutine

• Distribution is expensive in performance,
development, hardware, etc.

Web

Client

Web

Client

Web

Client

Web

Server

Web

Server

Web

Client

Web

Server

Application

Server

Application

Server

Data Source Servers

...

...

...

Questions

